The structure of purified kinetochores reveals multiple microtubule attachment sites

Shane Gonen^{1,2,6}, Bungo Akiyoshi^{2,3,5,6}, Matthew G. Iadanza^{1,4,6}, Dan Shi⁴, Nicole Duggan², Sue Biggins^{2,\$} and Tamir Gonen^{1,4,\$}

1. Supplementary Figures and Movies

Supplementary Figure 1. Additional images of Dsn1-Flag material purified from WT, *dad1-1* and *ndc80-1* yeast strains.

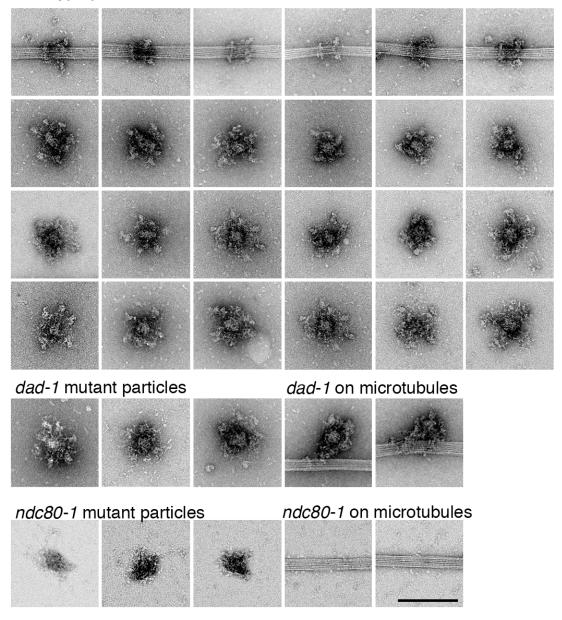
Supplementary Figure 2: Kinetochores are enriched on microtubules.

2. Supplementary Tables

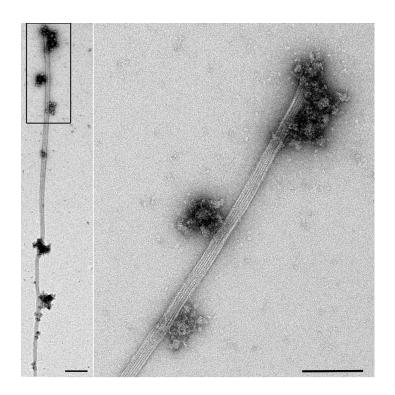
Supplementary Table 1. Average kinetochore particle measurements.

Supplementary Table 2. Average measurements of small particles laterally bound to microtubules.

Supplementary Table 3. Quantification of WT and mutant particles bound to microtubules.


Supplementary Table 4. Yeast strains used in this study.

3. Supplementary Movies


Three-dimensional tomographic reconstructions of two representative kinetochore complexes bound to microtubules.

1. Supplementary Figures and Movies

Wild type particles

Supplementary Figure 1. Additional images of Dsn1-Flag material purified from WT, *dad1-1* and *ndc80-1* yeast strains. Representative negative stain images of Dsn1-His-Flag eluates from WT (SBY8253), *dad1-1* (SBY8460) and *ndc80-1* (SBY8362) strains. Scale bar 200 nm.

Supplementary Figure 2: Kinetochores are enriched on microtubules. An image of a microtubule after incubation with purified kinetochore particles. The kinetochores are enriched on the microtubule relative to the rest of the grid despite being diluted by the incubation with the microtubules. Scale bar 200 nm.

Supplementary Table 1. Average kinetochore particle measurements.

	end to end	central hub	globular domains	Number of
	(nm)	(nm)	(nm) ^a	globular domains
Average	126	37	21	N/A
standard deviation	13	3	2	N/A
Numbers of data				
points	88	72	97	79
max	150	44	28	7
min	100	30	17	5

^aThe globular domains generally showed varied morphologies rendering accurate quantification impossible. The diameters provided here represent the average that was calculated from 97 selected globular domains that showed the most uniform globular structure.

Supplementary Table 2. Average measurements of small particles laterally bound to microtubules.

			Kink position
	Diameter of ring (nm)	Length of rod (nm)	relative to ring (nm)
Average	50	56	25
standard deviation	3	4	2
numbers of data points	99	128	67
max	58	65	30
min	45	48	20

Supplementary Table 3. Quantification of WT and mutant particles bound to microtubules.

	Large particles	Large particles	Total microtubule	Total particles/ μm
	with ring	without ring	length (µm) analyzed	microtubule length
WT	55	355	493.1 (n=200)	0.68
Ndc80-1	0	3	585.5 (n=200)	0.005
Dad1-1	0	175	231.6 (n=100)	0.76

Supplementary Table 4. Yeast strains used in this study. All strains are isogenic with the W303 background.

Strain	Genotype
Suam	denotype
SBY3	MAT a ura3-1 leu2,3-112 his3-11 trp1-1 ade2-1 LYS2 can1-100
	$bar1\Delta$
SBY7441	MAT a ura3-1 leu2,3-112 his3-11 trp1-1 ade2-1 lys2 can1-100
	bar1 Δ Dsn1-3Flag::KAN
SBY7653	MAT a ura3-1 leu2,3-112 his3-11 trp1-1 ade2-1 LYS2 ALK1-
	Flag::TRP1 can1-100 bar1Δ
SBY8253	MAT a ura3-1 leu2,3-112 his3-11 trp1-1 ade2-1 can1-100 LYS2
	bar1∆DSN1-6His-3Flag∷URA3
SBY8362	MAT a ura3-1 leu2,3-112 his3-11 trp1-1 ade2-1 can1-100 LYS2
	bar1∆DSN1-6His-3Flag::URA3 ndc80-1
SBY8460	MATa ura3-1 leu2,3-112 his3-11 trp1-1::256lacO::TRP1 ade2-
	1 can1-100 LYS2 bar1Δ DSN1-6His-3Flag:URA3 dad1-1::KAN
SBY9047	MATa ura3-1 leu2,3-112 his3-11 trp1-1::256lacO::TRP1 ade2-
	1 Dsn1-3Flag::KAN ndc80::NAT:Ndc80-6His:TRP1 can1-100
	LYS2 $bar1\Delta$

Supplementary Movies: Three-dimensional tomographic reconstructions of two representative kinetochore complexes bound to microtubules. For each particle we present a sliced view. Kinetochore complexes in pink, microtubule in yellow.